If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7p^2+4p=2
We move all terms to the left:
7p^2+4p-(2)=0
a = 7; b = 4; c = -2;
Δ = b2-4ac
Δ = 42-4·7·(-2)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-6\sqrt{2}}{2*7}=\frac{-4-6\sqrt{2}}{14} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+6\sqrt{2}}{2*7}=\frac{-4+6\sqrt{2}}{14} $
| x+6+x+6=3x+3 | | –36z2–1=0 | | 3x+3x=11x-5 | | 28+180+(20+x)=180 | | 9n^2-9n=3 | | X+29=x+126 | | 3(2+4)=6(5x+2) | | 2×3+3y=6 | | 17x-2=12+15x | | -2(2x+2)=3(2x-3) | | -2x-81=5 | | 4(t-6)^2+12=312 | | 138+7x=180 | | 3y+24=7y-55 | | 4k^2+12=0 | | 3-y-7=4(y-7) | | 43+109-10+2x=180 | | 2a+a/10+44=180 | | 6x+6x=11x+6 | | 8x+8x=14x+4 | | 16=–2(u−60) | | 9x+9x=17x+5 | | 41+64+15+6x=180 | | 1.8/y=0.009 | | x+4+x+4=11x-1 | | 3x^2+10x-12=3.75 | | 0.25(8x-12)=-x | | (z-6)^2=26 | | x+8=5x-1 | | 28-y=4y-4 | | 1/4(8x-12)=-x | | x+10+x+10=7x+10 |